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The problem of realizing a one-sided constraint by means of an elastic force is considered. A liiit theorem is 
established for more general assumptions on the non-potential generalized forces than in [l]. 

The general theorem on the realization of two-sided constraints by means of elastic forces was proposed by 
Courant and proved in [2]. An analogous theorem for one-sided constraints was stated in [l]. 

1. INITIAL EQUATIONS 

Let a natural mechanical system be given in R” = {r}, subject to an ideal one-sided holonomic constraint 
defining a half-space A4 in R” with boundary 2M of dimensions rrs = PI - 1. Let E(r, r) be. the kinetic energy of the 

system without constraints and let F(r, r’) be the generalized active force. In a neighbourhood of any point on the 
manifold &U one can introduce coordinates q E R and r E R”O such that M is defined by the inequality q 2 0 
(and &V by q = 0) and the quadratic form E does not contain the product of x’ and q’. Therefore, henceforth we 
shall assume for simplicity that such coordinates are global, i.e. q is the first andx the remaining n - 1 components 
of r. 

Then 

E(r, r) = T(x. x) + ‘/2q’A(x)q’ + O&l), A(x) > 0 (1.1) 

The equations of motion have the form 

(aElary - aElar = F + R, q 2 0 (l-2) 

where R is the reaction of the constraint. The system moves under the constraint if q = 0 during the motion. 
Consider the realization of a one-sided constraint by means of a force with potential NW, where N is a large 

positive parameter and 

W=1/2@(x)Q+O(lq13) for q<O; W=O for qa0 (1.3) 

Henceforth we shall assume for simplicity that B(x) is the same as the corresponding coefficient in the quadratic 
form E(r, r.), i.e. B(x) = A(x). The equations of motion of the system without constraints have the form 

(aElar)* - aElar = F - Nawtar (l-4) 

2. REALIZATION OF THE MOTION OF THE SYSTEM WITH THE CONSTRAINT 

Let r,(t) (0 G t 4 T) be the motion of the system with a one-sided constraint given by (1.2), and kinetic energy 
E of the form (l.l), R,(t) being the reaction. Suppose that the following conditions are satisfied: the trajectory of 

motion belongs to &U, i.e. q_(r) = 0 and R_,(t) > 0 for 0 4 t < r, and W has the form (1.3). 
Let r&) be the motion (1.4) of the system with no constraint, given the initial conditions rd0) = r,(O) and &JO) 

= r;(O). 

Theorem 1. For any sufficiently large N the motion is defined for 0 d I =z z and 
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r/L&)-r,(f)+O(N-I)., r~(t)-r&(f)+O(N.-~) (2.1) 

Remark. The estimate (2.1) can be refmed 

x;,(t)=x;,(t)+O(N-I)_, qjv(t)=q60(t)+O(N-~) 

3. AUXILIARY PROPOSITIONS 

(2.2) 

hpos&ion 1. Consider the initial conditions for (1.2) in a compact set G irr the phase space R&. Any solution 

r(t) such that r(O), and i(0) belong to G (with q’(O}, q. 
no more than DA? during the time interval & 

P 0) will then move away from the initial conditions by 

s rhr-ln if N is sufficiently large. Moreover 

D-Cct+O(N-K), C=constaO (3-l) 

Protpdsition 2 Let the initial conditions for (1.4) belong to G with -QN-‘” s &O) s 0 and qd0) = 0. Then 

for sufficiently large N 

lxjv- x;, Ia DN-’ , IqN -qmls DN-‘, lqh -q;,IsDN+ (3.2) 

as Iong as qN s 0 where r, rk is the solution of (1.2) with initial conditions r_(O) = r&O), x$_I) = xjv(O) and 
q:(o) = 0. 

proposition 2 is a direct consequence of a theorem in [3], accordiig to which (2.1) and (2.2) are satisfied in the 
case of the realization of an ideal two-sided holonomic constraint with the aid of a force with potential NW@‘(r) 

reaches a minimum on the constraint manifold). The estimates (2.2) remain valid if the initial condition q:(O) is 
replaced by O(N-‘3, which follows from [3]. 

4. PROOF OF THEOREM 1 

In the phase space R& we consider a domain G which is a neighbourhood of the solution r,, ri. Let Fg be the 

projection of the generalized force F onto the direction of 4. Then 

-m 3 F4 + aE/aq L 44, Msm>O (4.1) 

in G. 
The kinetic energy E(r, r’) has the form (1.1) with a d A(x) s A; and W(r) has the form (1.3). The equality 

(dE/Ciq’)’ - q”A(x) - (c3A(x)/dx&q’ = O(q) + O(q’) (4.2) 

holds and the O(-) functions on the right-hand side are uniformly bounded in G. 
Consider the motion of the free system. Since qN(O) = qg(O) = 0 and r&O) < 0, it is seen from (4.1) that qd0) 

becomes negative at the beginning of the motion and the estimates (2.1) hold. Suppose that the trajectory of the 
system lies in the half-space q > 0, i.e. qN is equal to zero and qb is positive at a certain instant to. We call this a 

“jump”. Then, by (2.1) 

It can be shown that the time during which the system moves “above” the constraint is bounded. Indeed, since 

there is a time s, greater than TV, such that q&s) = 0, we have 
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9;; = [F, + aE/aq - (dA/dx)x’q ;v * o(9,) + o(9 ;~)yA(x) 

This means that &(f) 1 d m/(24) for sufficiently large N. Therefore 

s-toss/2, S=8DAl(mNK) 

By analogy, it can be shown that if tl is a time such that q&) = 0 and qj&) < 0, then 

tl-s~S/2 

Since &l(t) 1 =s 2&f/u for to 6 t s tl, then at least 

Iq$)l c MS/(2u) 

(4.3) 

(4.4) 

(4-S) 

The difference lq;v(to) 1 - Iq&) 1 can be estimated as follows: 

I9k(‘0)+9k(‘,)l=j 9iG(sM&;9i(sM 
b s 

C9&0>> > 4 9&Q c 0) 

Inequality (4.3) implies that a constant C exists such that 

~~= I a~@+- - OP)hw 1 I x is a function uniform@ bounded in G. 
For positive v&es of 9 the motion of the free system can be described by the same equations as the motion of 

the system with one-sided constraint. It follows that the solution shifts by no more than Ku2 dtig a time S, 
where k is proportional to D within O(ZTm) (see (3.1)). As has been demonstrated, (4.5) holds. Therefore e;; 
changes by no more than QN-lnS Then 

l9iY(ro)+Qk(tt)I~SQN-~ = C,D’N-’ 

We will now consider entering the region “under the constraint” 

q,,(t,)-0, qk(t,)=-D,N-% D, <20 

Then 

9i+N9~ =-& Fq+ ;-$%*9k +0(9N)+0(9’hr) I 
By (3.2), there is a positive constant K such that 

Iq’Nla KN-f/2, Ir,-rml~W1, I+-x,icKN-’ 

After a time t < 2x@’ the right-hand side of (4.6) changes by no more than Q$V-@. It follows that 

9j;r --N9jv + F, tQ,N -% 
r-r, 

and 9N can be given witb accuracy up to & = Q21\r3n 

9NfE - +in((N$t-t,)) -~cos( NK(t-I,))++ 

(4.6) 

(4.7) 



The right-hand side of (4.7) is equal to zero when 

t%ll~UtXltiy, qN = 0 fOl’ t = t, and t = t2 f S/N, and the upper estimate for S is independent of Dr (as Dr 

increases Qz remains unchanged, and so S decreases). 
It foIIows that tq&,) + q&z) 1 c C&-‘. 

At the m “jump= 

The whole of the preceding discussion therefore holds at least as long as (C@N-’ + C$V-‘)K < DN-‘” (K is the 

number of @jumps”). 
Letdtbethetime 

(4.8) is satisfied 

of a “iump”. Then K = T&U d Ty~~/~C~~, where TX is the time intervai during which 

fqft) f < 3DN-‘n and- ?e whoIe discu ssion can be repeated with D repIaced by %D= The 
time intervat T2 during which q@) < 3X?N-“” wilI &en be longer than C~~~)/~~~~~~~ + C& 

Let 2” be a time intervaI such that 

(n - I)DN-H < qh(t) e nDN-K. 

q,vW~Q(N-‘1. qk(t)d(N-x). 

Now, it can be shown that 

Lety = amf. Then 

(since tbe constraint is ideaI, the project of the reaction R onto any of the x directions is equa.I to zero). We use 

the equations 

XL = A%+y + O(N-‘), y&=-Z/&x + F(x) + O(N-‘) 

&x!ause xN and yN satisfy (4.10) to within O(N-r), we obtain (4.9) by the smoothness of alf the functions, 

5. LEAVING THE CONSTRAINT 

Let r,(t) be the motion of the system with one-sided constraiut given by (1.2) with kinetic energy E of the form 
(Ll), let R, be the reaction of the constraint, and bt 0 G t d 2. 

I_.& the system move on the con&raid for 0 S t < za, i.e. &f) = 0 and & r 4 Ieaving the constrtit at 
c = k, and suppose a positive constant 6 exists such that q_ > Q fort E fr,, ux -l- S]. 

Let r,&) be the motion (1.4) of the system without a constraint, with Wof the form (1.3) and r&l) = r_,(O), 

mJ0) = r,(O). 

l’korem 2. For any sufficientIy large N the motion is de&red for 0 d f c z, + 6 and the equalities 
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qt -r, +O(N -% rh=r&+O(N -H) 
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(5-I) 

are satisfied 

Remarks. Equalities (2.1) and (2.2) are satisfied when system (1.4) moves on the constraint, i.e. when t d 2,. 
When t > z, + 6 system (1.2) can reach the surface q = 0 again (either smoothly or with an impact). However, 
Theorem 2 does not cover these questions (see [2])_ 

6, PROOF OF THEOREM 2 

In the phase space Rz” let G be a neighbourhood of the solution r, r_ and let F4 be the project of F onto the 

diiection of q. 
Since all the functions are assumed to be multiply differentiable, there is a time rl such that ]F, + dE/dq 1 

decreases monotonically for t > q. By Theorem 1, the motion is defined for t G rr and the equalities (2.1) and 
(2.2) are satisfied. 

Suppose that the system turns out to be “above” the constraint fort > q with “exit” velocity q; = BNm. Then, 
since 1 F4 e aE/ilq 1 is monotonically decreasing, the modulus of qi at the time when qN = 0 and qk < 0 does not 

exceed that of qi at the time. when qN = 0 and q; c 0. In the half-space {q < 0) the coordinate qN has the form 
(4.7). Differentiating with respect to t and substituting t = t2 + S/N, we obtain 

Therefore, at each “jump” the modulus of q& increases by no more than 2FsS/N. Since the time of a “jump” is 
not less than CON-‘/“, the time interval I’i during which (4.8) is satisfied is longer than ~2/(2SZQ. It follows that 
the motion is defined for 0 s t d zor and the equalities (2.1) and (2.2) are satisfied. Fort G ‘F, there is a time 
t, = z, + O(N-‘R) such that q&t=) = 0. Within the time interval [tw 2, + S] the system with one-sided constraint 
and the free system are described by the same equations if N is sufficiently large. Therefore, since the estimates 
(3.1) hold when t = ta (and so rN and rh differ from r, and, respectively, r: by O(Nm) at this instant), the theorem 
on the continuous dependence of the solution on the initial conditions implies that the estimates (5.1) are satisfied 
in this interval. The theorem is proved. 
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