# THE REALIZATION OF UNILATERAL CONSTRAINTS $\dagger$ 

M. V. DERYABIN<br>Moscow<br>(Received 15 December 1993)

The problem of realizing a one-sided constraint by means of an elastic force is considered. A limit theorem is established for more general assumptions on the non-potential generalized forces than in [1].

The general theorem on the realization of two-sided constraints by means of elastic forces was proposed by Courant and proved in [2]. An analogous theorem for one-sided constraints was stated in [1].

## 1. INITIAL EQUATIONS

Let a natural mechanical system be given in $\mathbf{R}^{n}=\{r\}$, subject to an ideal one-sided holonomic constraint defining a half-space $M$ in $\mathbf{R}^{n}$ with boundary $\partial M$ of dimensions $n_{0}=n-1$. Let $E(r, r)$ be the kinetic energy of the system without constraints and let $F(r, r$ ) be the generalized active force. In a neighbourhood of any point on the manifold $\partial M$ one can introduce coordinates $q \in \mathbf{R}$ and $r \in \mathbf{R}^{n_{0}}$ such that $M$ is defined by the inequality $q \geqslant 0$ (and $\partial M$ by $q=0$ ) and the quadratic form $E$ does not contain the product of $x$ and $q$. Therefore, henceforth we shall assume for simplicity that such coordinates are global, i.e. $q$ is the first and $x$ the remaining $n-1$ components of $r$.

Then

$$
\begin{equation*}
E(r, r)=\mathrm{T}(x, x)+{ }^{1} / 2 q \cdot A(x) q+O(|q|), \quad A(x)>0 \tag{1.1}
\end{equation*}
$$

The equations of motion have the form

$$
\begin{equation*}
(\partial E / \partial r)^{\cdot}-\partial E / \partial r=F+R, \quad q \geqslant 0 \tag{1.2}
\end{equation*}
$$

where $R$ is the reaction of the constraint. The system moves under the constraint if $q=0$ during the motion.
Consider the realization of a one-sided constraint by means of a force with potential $N W$, where $N$ is a large positive parameter and

$$
\begin{equation*}
W=1 / 2 q B(x) q+O\left(|q|^{3}\right) \text { for } q<0 ; W=0 \text { for } q \geqslant 0 \tag{1.3}
\end{equation*}
$$

Henceforth we shall assume for simplicity that $B(x)$ is the same as the corresponding coefficient in the quadratic form $E(r, r)$, i.e. $B(x)=A(x)$. The equations of motion of the system without constraints have the form

$$
\begin{equation*}
(\partial E / \partial r)-\partial E / \partial r=F-N \partial W / \partial r \tag{1.4}
\end{equation*}
$$

## 2. REALIZATION OF THE MOTION OF THE SYSTEM WITH THE CONSTRAINT

Let $r_{\infty}(t)(0 \leqslant t \leqslant \tau)$ be the motion of the system with a one-sided constraint given by (1.2), and kinetic energy $E$ of the form (1.1), $R_{\infty}(t)$ being the reaction. Suppose that the following conditions are satisfied: the trajectory of motion belongs to $\partial M$, i.e. $q_{\infty}(t)=0$ and $R_{\infty}(t)>0$ for $0 \leqslant t \leqslant \tau$, and $W$ has the form (1.3).

Let $r_{N}(t)$ be the motion (1.4) of the system with no constraint, given the initial conditions $r_{N}(0)=r_{\infty}(0)$ and $r_{N}(0)$ $=r_{\infty}(0)$.

Theorem 1. For any sufficiently large $N$ the motion is defined for $0 \leqslant t \leqslant \tau$ and

$$
\begin{equation*}
r_{N}(t)=r_{\infty}(t)+O\left(N^{-1}\right), \quad r_{N}(t)=r_{\infty}^{\dot{\infty}}(t)+O\left(N^{-1 / 2}\right) \tag{2.1}
\end{equation*}
$$

Remark. The estimate (2.1) can be refined

$$
\begin{equation*}
x_{N}^{*}(t)=x_{\infty}^{*}(t)+O\left(N^{-1}\right), \quad q_{N}(t)=q_{\infty}^{\prime}(t)+O\left(N^{-1 / 2}\right) \tag{2.2}
\end{equation*}
$$

## 3. AUXILIARY PROPOSITIONS

Proposition 1. Consider the initial conditions for (1.2) in a compact set $G$ in the phase space $\mathbf{R}^{2 n}$. Any solution $r(t)$ such that $r(0)$, and $r^{\prime}(0)$ belong to $G$ (with $\left.q^{\prime}(0), q_{0} \geqslant 0\right)$ will then move away from the initial conditions by no more than $D N^{-1 / 2}$ during the time interval $\Delta t \leqslant \tau N^{-1 / 2}$ if $N$ is sufficiently large. Moreover

$$
\begin{equation*}
D=C \tau+O\left(N^{-1 / 2}\right), \quad C=\text { const } \geqslant 0 \tag{3.1}
\end{equation*}
$$

Proposition 2. Let the initial conditions for (1.4) belong to $G$ with $-Q N^{-1 / 2} \leqslant q_{N}(0) \leqslant 0$ and $q_{N}(0)=0$. Then for sufficiently large $N$

$$
\begin{equation*}
\left|x_{N}-x_{\infty}\right| \leqslant D N^{-1}, \quad\left|q_{N}-q_{\infty}\right| \leqslant D N^{-1}, \quad\left|q_{N}-q_{\infty}\right| \leqslant D N^{-1 / 2} \tag{3.2}
\end{equation*}
$$

as long as $q_{N} \leqslant 0$ where $r_{\infty}, r_{\infty}$ is the solution of (1.2) with initial conditions $r_{\infty}(0)=r_{N}(0), x_{\infty}(0)=x_{N}(0)$ and $q_{\infty}^{\prime}(0)=0$.

Proposition 2 is a direct consequence of a theorem in [3], according to which (2.1) and (2.2) are satisfied in the case of the realization of an ideal two-sided holonomic constraint with the aid of a force with potential $N W$ ( $W(r)$ reaches a minimum on the constraint manifold). The estimates (2.2) remain valid if the initial condition $q_{\infty}^{\prime}(0)$ is replaced by $O\left(N^{-1 / 2}\right)$, which follows from [3].

## 4. PROOF OF THEOREM 1

In the phase space $\mathbf{R}^{2 n}$ we consider a domain $G$ which is a neighbourhood of the solution $r_{o o s} r_{\infty 0 .}$ Let $F_{g}$ be the projection of the generalized force $F$ onto the direction of $q$. Then

$$
\begin{equation*}
-m \geqslant F_{q}+\partial E / \partial q \geqslant-M, \quad M>m>0 \tag{4.1}
\end{equation*}
$$

in $G$.
The kinetic energy $E\left(r, r^{\prime}\right)$ has the form (1.1) with $a \leqslant A(x) \leqslant A$; and $W(r)$ has the form (1.3). The equality

$$
\begin{equation*}
\left(\partial E / \partial q^{\prime}\right)-q^{\prime \prime} A(x)-(\partial A(x) / \partial x) x q^{\prime}=O(q)+O\left(q^{\prime}\right) \tag{4.2}
\end{equation*}
$$

holds and the $O(\cdot)$ functions on the right-hand side are uniformly bounded in $G$.
Consider the motion of the free system. Since $q_{N}(0)=q_{N}(0)=0$ and $q_{N}(0)<0$, it is seen from (4.1) that $q_{N}(0)$ becomes negative at the beginning of the motion and the estimates (2.1) hold. Suppose that the trajectory of the system lies in the half-space $q>0$, i.e. $q_{N}$ is equal to zero and $q_{N}$ is positive at a certain instant $t_{0}$. We call this a "jump". Then, by (2.1)

$$
\dot{q}_{N}\left(t_{0}\right) \leqslant D N^{-1 / 2},\left|x_{N}\left(t_{0}\right)-x_{\infty}\left(t_{0}\right)\right| \leqslant D N^{-1},\left|x_{N}\left(t_{0}\right)-x_{\infty}\left(t_{0}\right)\right| \leqslant D N^{-1}
$$

It can be shown that the time during which the system moves "above" the constraint is bounded. Indeed, since there is a time $s$, greater than $t_{0}$, such that $q_{N}(s)=0$, we have

$$
q_{N}(s)=q_{N}\left(t_{0}\right)+\int_{t_{0}}^{s} q_{N}^{-}(\xi) d \xi
$$

It follows that

$$
\int_{t_{0}}^{s} q_{\ddot{N}}(\xi) d \xi \geqslant-2 D N^{-1 / 2}
$$

$$
\ddot{q_{N}}=\left[F_{q}+\partial E / \partial q-(\partial A / \partial x) x q_{N}+O\left(q_{N}\right)+O\left(q_{N}\right) / / A(x)\right.
$$

This means that $\left|q_{N}(t)\right| \leqslant m /(2 A)$ for sufficiently large $N$. Therefore

$$
\begin{equation*}
s-t_{0} \leqslant S / 2, \quad S=8 D A /\left(m N^{1 / 2}\right) \tag{4.3}
\end{equation*}
$$

By analogy, it can be shown that if $t_{1}$ is a time such that $q_{N}\left(t_{1}\right)=0$ and $q_{N}\left(t_{1}\right)<0$, then

$$
\begin{equation*}
t_{1}-s \leqslant S / 2 \tag{4.4}
\end{equation*}
$$

Since $\left|q_{M}(t)\right| \leqslant 2 M / a$ for $t_{0} \leqslant t \leqslant t_{1}$, then at least

$$
\begin{equation*}
\left|\dot{q}_{N}(t)\right|<M S /(2 a) \tag{4.5}
\end{equation*}
$$

The difference $\left|q_{N}\left(t_{0}\right)\right|-\left|q_{N}\left(t_{1}\right)\right|$ can be estimated as follows:

$$
\begin{aligned}
& \left|q_{N}^{\prime}\left(t_{0}\right)+q_{N}^{\prime}\left(t_{1}\right)\right|=\int_{t_{0}}^{s} q_{N}(\xi) d \xi-\int_{s}^{t_{N}} q_{N}(\xi) d \xi \\
& \left.\left(q_{N}^{\prime}\left(t_{0}\right)\right)>0, \quad q_{N}^{*}\left(t_{1}\right)<0\right)
\end{aligned}
$$

Inequality (4.3) implies that a constant $C$ exists such that

$$
\left|q_{N}\right| \leqslant\left|\left(F_{q}+\partial E / \partial q\right) / A(x)\right|+C l q \dot{N}_{N}
$$

since $|((\partial A / \partial x) x-O(1)) / A(x)|$ is a function uniformly bounded in $G$.
For positive values of $q$ the motion of the free system can be described by the same equations as the motion of the system with one-sided constraint. It follows that the solution shifts by no more than $N^{-1 / 2}$ during a time $S$, where $k$ is proportional to $D$ within $O\left(N^{-1 / 2}\right)$ (see (3.1)). As has been demonstrated, (4.5) holds. Therefore $q_{N}$ changes by no more than $Q N^{-1 / 2}$. Then

$$
\left|q_{N}\left(t_{0}\right)+q_{N}^{\prime}\left(t_{1}\right)\right| \leqslant S Q N^{-1 / 2}=C_{1} D^{2} N^{-1}
$$

We will now consider entering the region "under the constraint"

$$
q_{N}\left(t_{1}\right)=0, \quad q_{N}\left(t_{1}\right)=-D_{1} N^{-1 / 2}, \quad D_{1}<2 D
$$

Then

$$
\begin{equation*}
q_{N}^{-}+N q_{N}=\frac{1}{A(x)}\left[F_{q}+\frac{\partial E}{\partial q}-\frac{\partial A}{\partial x} x q_{N}+O\left(q_{N}\right)+O\left(q_{N}\right)\right] \tag{4.6}
\end{equation*}
$$

By (3.2), there is a positive constant $K$ such that

$$
\left|q_{N}\right| \leqslant K N^{-1 / 2}, \quad\left|r_{N}-r_{\infty}\right| \leqslant K N^{-1}, \quad\left|x_{N}-x_{\infty}\right| \leqslant K N^{-1}
$$

After a time $t<2 \pi N^{-1 / 2}$ the right-hand side of (4.6) changes by no more than $Q_{1} N^{-1 / 2}$. It follows that

$$
q_{N}^{-}=-N q_{N}+F_{0} \pm Q_{1} N^{-1 / 2}, \quad F_{0}=\left.\frac{1}{A(x)}\left(F_{q}+\frac{\partial E}{\partial q}\right)\right|_{t=t_{1}}
$$

and $q_{N}$ can be given with accuracy up to $\varepsilon=Q_{2} N^{-3 / 2}$

$$
\begin{equation*}
q_{N} \pm \varepsilon=-\frac{D_{1}}{N} \sin \left(\left(N^{1 / 2}\left(t-t_{1}\right)\right)-\frac{F_{0}}{N} \cos \left(N^{1 / 2}\left(t-t_{1}\right)\right)+\frac{F_{0}}{N}\right. \tag{4.7}
\end{equation*}
$$

The right-hand side of (4.7) is equal to zero when

$$
t=t_{1}, \quad t=t_{2} ; \quad t_{2}=t+N^{-1 / 2} \arcsin \frac{2 D_{1} F_{0}}{D_{1}^{2}+F_{0}^{2}}
$$

Consequently, $q_{N}=0$ for $t=t_{1}$ and $t=t_{2} \pm S / N$, and the upper estimate for $S$ is independent of $D_{1}$ (as $D_{1}$ increases $Q_{2}$ remains unchanged, and so $S$ decreases).

It follows that $\left|q_{N}\left(t_{1}\right)+q_{N}\left(t_{2}\right)\right|<C_{2} N^{-1}$.
At the next "jump"

$$
\begin{equation*}
\left|q_{N}\right|<2 D N^{-1 / 2} \tag{4.8}
\end{equation*}
$$

The whole of the preceding discussion therefore holds at least as long as $\left(C_{1} D^{2} N^{-1}+C_{2} N^{-1}\right) K<D N^{-1 / 2}$ (K is the number of "jumps").

Let $\Delta t$ be the time of a "jump". Then $K=T_{1} / \Delta t \leqslant T_{1} N^{-1 / 2} /\left(C_{3} D\right)$, where $T_{1}$ is the time interval during which (4.8) is satisfied

$$
T_{1} \geqslant C_{3} D^{2} /\left(C_{1} D^{2}+C_{2}\right)
$$

At $t=T_{1}$ we have $|q(t)|<3 D N^{-1 / 2}$ and the whole discussion can be repeated with $D$ replaced by $3 / 2 D$. The time interval $T_{2}$ during which $q_{N}(t)<3 D N^{-1 / 2}$ will then be longer than $C_{3}(2 D) /\left(C_{1}(2 D)^{2}+C_{2}\right)$.

Let $T_{n}$ be a time interval such that

$$
(n-1) D N^{-1 / 2}<q_{N}^{*}(t)<n D N^{-1 / 2}
$$

Then the sum $T_{1}+\ldots+T_{n}$ can be made a large as required: $T_{1}+\ldots+T_{n-1} \leqslant \tau<T_{1}+\ldots+T_{n}$. It follows that for $0 \leqslant t \leqslant \tau$

$$
q_{N}(t)=Q\left(N^{-1}\right), \quad q_{N}(t)=O\left(N^{-1 / 2}\right)
$$

Now, it can be shown that

$$
\begin{equation*}
x_{N}(t)=x_{\infty}(t)+O\left(N^{-1}\right), \quad x_{N}(t)=x_{\infty}(t)+O\left(N^{-1}\right) \tag{4.9}
\end{equation*}
$$

Let $y=\partial E / \partial x$. Then

$$
\begin{equation*}
x_{\infty}^{*}=\partial E / \partial y, \quad y_{\infty}^{*}=-\partial E / \partial x+F(x) \tag{4.10}
\end{equation*}
$$

(since the constraint is ideal, the project of the reaction $R$ onto any of the $x$ directions is equal to zero). We use the equations

$$
x_{N}=\partial E / \partial y+O\left(N^{-1}\right), \quad y_{N}^{\prime}=-\partial E / \partial x+F(x)+O\left(N^{-1}\right)
$$

Because $x_{N}$ and $y_{N}$ satisfy (4.10) to within $O\left(N^{-1}\right)$, we obtain (4.9) by the smoothness of all the functions.

## 5. LEAVING THE CONSTRAINT

Let $r_{\infty}(t)$ be the motion of the system with one-sided constraint given by (1.2) with kinetic energy $E$ of the form (1.1), let $R_{\infty}$ be the reaction of the constraint, and let $0 \leqslant t \leqslant \tau$.

Let the system move on the constraint for $0 \leqslant t<\tau_{c x}$ i.e. $q_{\infty}(t)=0$ and $R_{\infty}>0$, leaving the constraint at $t=\tau_{c x}$, and suppose a positive constant $\delta$ exists such that $q_{\infty}>0$ for $t \in\left(\tau_{c x}, \tau c x+\delta\right]$.

Let $r_{N}(t)$ be the motion (1.4) of the system without a constraint, with $W$ of the form (1.3) and $r_{N}(0)=r_{\infty}(0)$, $r_{N}(0)=r_{m}(0)$.

Theorem 2. For any sufficiently large $N$ the motion is defined for $0 \leqslant t<\tau_{c x}+\delta$ and the equalities

$$
\begin{equation*}
r_{N}=r_{\infty}+O\left(N^{-1 / 2}\right), \quad r_{N}=r_{\infty}+O\left(N^{-1 / 2}\right) \tag{5.1}
\end{equation*}
$$

are satisfied.
Remarks. Equalities (2.1) and (2.2) are satisfied when system (1.4) moves on the constraint, i.e. when $t \leqslant \tau_{c r}$ When $t>\tau_{c x}+\delta$ system (1.2) can reach the surface $q=0$ again (either smoothly or with an impact). However, Theorem 2 does not cover these questions (see [2]).

## 6. PROOF OF THEOREM 2

In the phase space $\mathbf{R}^{2 n}$ let $G$ be a neighbourhood of the solution $r_{\infty}, r_{\infty}$ and let $F_{q}$ be the project of $F$ onto the direction of $q$.
Since all the functions are assumed to be multiply differentiable, there is a time $\tau_{1}$ such that $\left|F_{q}+\partial E / \partial q\right|$ decreases monotonically for $t>\tau_{1}$. By Theorem 1 , the motion is defined for $t \leqslant \tau_{1}$ and the equalities (2.1) and (2.2) are satisfied.

Suppose that the system turns out to be "above" the constraint for $t>\tau_{1}$ with "exit" velocity $q_{N}=D N^{-1 / 2}$. Then, since $\left|F_{q}<\partial E / \partial q\right|$ is monotonically decreasing, the modulus of $q_{N}$ at the time when $q_{N}=0$ and $q_{N}<0$ does not exceed that of $q_{N}$ at the time when $q_{N}=0$ and $q_{N}<0$. In the half-space $\{q<0\}$ the coordinate $q_{N}$ has the form (4.7). Differentiating with respect to $t$ and substituting $t=t_{2}+S / N$, we obtain

$$
\left|q_{N}\left(t_{1}\right)+q_{N}(t)\right| \leqslant 2 F_{0} S N
$$

Therefore, at each "jump" the modulus of $q_{N}$ increases by no more than $2 F_{0} S / N$. Since the time of a "jump" is not less than $C D N^{-1 / 2}$, the time interval $T_{1}$ during which (4.8) is satisfied is longer than $D^{2} /\left(2 S F_{0}\right)$. It follows that the motion is defined for $0 \leqslant t \leqslant \tau_{c x}$ and the equalities (2.1) and (2.2) are satisfied. For $t \leqslant \tau_{c x}$ there is a time $t_{c x}=\tau_{\alpha}+O\left(N^{-1 / 2}\right)$ such that $q_{N}\left(t_{c \alpha}\right)=0$. Within the time interval $\left[t_{c x}, \tau_{c x}+\delta\right]$ the system with one-sided constraint and the free system are described by the same equations if $N$ is sufficiently large. Therefore, since the estimates (3.1) hold when $t=t_{c x}$ (and so $r_{N}$ and $r_{N}$ differ from $r_{\infty}$ and, respectively, $r_{\infty}$ by $O\left(N^{-1 / 2}\right.$ ) at this instant), the theorem on the continuous dependence of the solution on the initial conditions implies that the estimates (5.1) are satisfied in this interval. The theorem is proved.

## REFERENCES

1. KOZLOV V. V., A constructive method of confirming the theory of systems with unilateral constraints. PrikL. Mat. Mekh. 52, 6, 883-894, 1988.
2. RUBIN H. and UNGAR P., Motion under a strong constraining force. Commun. Pure Appl. Math. 10, 1, 65-87, 1967.
3. KOZLOV V. V. and NEISHTADT A. I., The realization of holonomic constraints. Prikl. Mat. Mekh. 54, 5, 858-861, 1990.
